
4762 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 6, MARCH 15, 2021

Using Reduced Paths to Achieve Efficient
Privacy-Preserving Range Query in Fog-Based IoT

Hassan Mahdikhani , Graduate Student Member, IEEE, Rongxing Lu , Senior Member, IEEE,

Jun Shao , and Ali Ghorbani , Senior Member, IEEE

Abstract—The fog computing architectural model has recently
seen advances with respect to bandwidth and latency issues.
However, since fog devices are deployed at the network edge
and are not fully trustable, there are still security and privacy
challenges. In this article, aiming at improving both communica-
tion efficiency and privacy protection, we propose a new efficient
and privacy-preserving range query scheme in fog-based Internet
of Things (IoT). We, first, introduce a new decomposition tech-
nique to efficiently interpret a given range query [L, U], where
0 ≤ L ≤ U ≤ n − 1, as a form of inverted reduced path strings.
Then, the symmetric homomorphic encryption (SHE) scheme is
employed to encrypt the reduced paths and hand them over
securely through a fog node to the IoT devices. This technique
enables a query user to launch a privacy-preserving continuous
or noncontinuous range query and receive a homomorphically
aggregated encrypted response with an improved O(log2 n) com-
munication efficiency. The detailed security analysis shows that
our proposed scheme is privacy preserving. In addition, exten-
sive performance evaluations are also conducted, and the results
demonstrate that our proposed scheme is by far more efficient
than those previously reported schemes in terms of computational
overhead and communication complexity.

Index Terms—Communication efficiency, fog-based Internet of
Things (IoT), privacy preserving, range query, reduced paths.

I. INTRODUCTION

RECENT advancements in the Internet of Things (IoT)
and wireless communication technologies have enabled

us to enjoy various smart things around our daily lives,
including smart vehicles [1]–[3], smart homes [4]–[6], smart
grids [7]–[10], and smart healthcare [11]. All of these are
highly dependent upon the massive data generated by IoT.
However, due to the limited built-in storage and comput-
ing capability of IoT devices, the data usually need to be
transferred from IoT devices to cloud serves for storage and

Manuscript received August 23, 2020; accepted September 28, 2020. Date
of publication October 7, 2020; date of current version March 5, 2021.
This work was supported in part by NSF of Zhejiang Province under Grant
LZ18F020003, and in part by NSFC under Grant U1709217. The work
of Rongxing Lu was supported by the National Science and Engineering
Research Council of Canada (NSERC) under Grant Rgpin 04009. The work
of Ali Ghorbani was supported by the NSERC through the Discovery Grant
and Canada Research Chair. (Corresponding author: Rongxing Lu.)

Hassan Mahdikhani, Rongxing Lu, and Ali Ghorbani are with the Canadian
Institute for Cybersecurity, Faculty of Computer Science, University of New
Brunswick, Fredericton, NB E3B 5A3, Canada (e-mail: hmahdikh@unb.ca;
rlu1@unb.ca; ghorbani@unb.ca).

Jun Shao is with the School of Computer and Information Engineering,
Zhejiang Gongshang University, Hangzhou 310018, China (e-mail:
chn.junshao@gmail.com).

Digital Object Identifier 10.1109/JIOT.2020.3029472

processing, which will inevitably encounter bandwidth prob-
lems and incur response latency [12]. In order to address
these bandwidth and latency issues, the concept of fog com-
puting was proposed by Cisco in 2012 [13]. Essentially, the
idea is to deploy fog devices equipped with certain storage
and computing capabilities at the network edge, which can
directly solve problems or preprocess parts of a problem close
to the IoT domain. Thus, it can provide low latency responses
and improve communication efficiency by only forwarding
preprocessed data to cloud server. Over the past years, IoT
integrated with fog computing has attracted considerable atten-
tion. However, since fog devices are deployed at the network
edge and might not be fully trusted, fog-based computing
still faces some security and privacy issues [14], [15]. In this
article, we aim to insure privacy while also being efficient
when performing privacy-preserving range aggregate queries
in fog-based IoT scenarios.

To clearly illustrate the research problem in fog-based IoT,
let us consider the following scenario in a smart grid [8], [9].
For the better electricity planning, the manager (i.e., a query
user) of a smart grid may query the number of houses whose
individual electricity consumption is within a certain range
in a certain area for planning purposes. If neither security
nor privacy are of concerns, this query can be easily com-
pleted. The query user sends the range to the fog devices
and the fog devices can directly return the query responses
through comparing the range with the values from the IoT
devices (i.e., smart meters). However, when the privacy is
taken into consideration, the values from the meters may reveal
the resident’s privacy, such as whether he/she lived in the
house recently. Moreover, the query and the corresponding
result may also reveal the query user’s privacy. For example,
his/her selling strategy could be deduced from the query and
result. For reasons such as these, several solutions have been
proposed [16], [17]. However, all of them suffer from one or
more of the following problems.

1) Privacy Level: The fog devices in many
solutions [18]–[20] can deduce the query result
from the communications between the query user and
IoT devices.

2) High Communication Overhead: The communication
complexity in a straightforward solution [16] is O(n),
where n is the biggest value that the smart meter can
return in a certain period of time. The current best result
is O(log3 n) communication efficiency, which seems still
high for large n [17].

2327-4662 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:42:56 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1306-0304
https://orcid.org/0000-0001-5720-0941
https://orcid.org/0000-0001-8352-0973
https://orcid.org/0000-0001-9189-6268

MAHDIKHANI et al.: USING REDUCED PATHS TO ACHIEVE EFFICIENT PRIVACY-PRESERVING RANGE QUERY IN FOG-BASED IoT 4763

3) Limited Query Types: Most of the current solutions can-
not support noncontinuous range queries directly, and
the only work around is to run the original solution
repeatedly. However, the resulting solution would reveal
some private information to the fog device, e.g., how
many ranges are in the query.

Aiming to solve the above issues, in this article, we employ
a reduced path technique to implement a new efficient and
privacy-preserving range query scheme for fog-based IoT.
Specifically, the contributions of this article are threefold.

1) We present a new privacy-preserving range query solu-
tion for the fog-based IoT. The notable property of
our proposal is that the communication complexity is
only O(log2 n). To the best of our knowledge, it is the
best result for privacy-preserving range queries in the
fog-based IoT setting.

2) Our proposal is the first to support continuous and non-
continuous queries and aggregating queries at the same
time. The decomposition technique addresses query for-
mat of recent studies [16], [17]. Also, [17] suffers from
a limitation in the query form in which the lower and
upper bound values must be of the form of two to the
power of integer value, i.e., [L, U] = [2a, 2a′]. The crit-
ical component, which may be of independent interest,
is the use of encrypted inverted reduced paths. Range
queries are decoded as reduced paths in a perfect binary
tree (PBTree), where all the nodes are encrypted with
the symmetric homomorphic encryption (SHE) scheme
proposed in our previous study [17].

3) The detailed security analysis shows that our solution is
indeed a privacy-preserving scheme. Furthermore, exten-
sive experiments also demonstrate that our proposal
outperforms state-of-the-art solutions in terms of low
communication complexity [16], [17].

The remainder of this article is structured as follows. We
first formalize our system model, security model, and design
goal in Section II. Then, we recall our preliminaries in
Section III. After that, we present our proposed scheme in
Section IV, followed by security analysis and performance
evaluation in Sections V and VI, respectively. Some related
works are discussed in Section VII, and finally, conclusions
are drawn in Section VIII.

II. MODELS AND DESIGN GOAL

In this section, we formalize our system model, security
model, and set out the design goal for our communication-
efficient privacy-preserving range query. For a clear descrip-
tion, some used symbols are first listed in Table I.

A. System Model

In our system model for privacy-preserving range queries
in fog-based IoT, as shown in Fig. 1, there are three kinds of
entities, namely, a query user at the user layer, a fog node at the
fog layer, and a set of IoT end devices I = {I1, I2, . . . , IN} at
the end-device layer. The detailed descriptions of these entities
are as follows.

Query User: In our system model, a query user formulates
and submits secure range queries to the IoT end devices via

TABLE I
LIST OF SYMBOLS USED IN PROPOSED SCHEME

Fig. 1. System model under consideration.

the fog node, and also obtains the corresponding encrypted
responses via the fog node. Particularly, as indicated in Fig. 1,
the range count query, i.e., COUNT(I′), can be submitted to
retrieve the number of IoT end devices in subset I′ ⊆ I.
Formally, we consider I′ as a subset of I = {I1, I2, . . . , IN},
where the prepared data wi at each IoT end device Ii ∈ I′ is
within the range [L, U], i.e.,

I′ = {Ii|Ii ∈ I ∧ wi ∈ [L, U]; 0 ≤ L ≤ U ≤ n− 1}. (1)

Upon receiving the above count query, the fog node returns
the response as follows:

COUNT
(
I′
) = the size

∣
∣I′

∣
∣. (2)

Note that the range [L, U] in our proposed system model
may be continuous or noncontinuous, i.e.,

[L, U] = [L1, U1] ∪ [L2, U2] ∪ · · · ∪ [Ls, Us] =
s⋃

ι=1

[Lι, Uι].

(3)

For example, our proposed scheme can handle simple continu-
ous range queries, e.g., [L, U] = [5, 12], and complex noncon-
tinuous ones, e.g., [L, U] = [0, 7]∪[16, 19]∪[24, 24]∪[28, 29],
as depicted in Figs. 2 and 3, respectively.

Fog Node: A fog node is deployed at the network edge,
i.e., the fog layer, which processes data prepared by IoT end
devices and relays the aggregated results to the query user.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:42:56 UTC from IEEE Xplore. Restrictions apply.

4764 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 6, MARCH 15, 2021

Fig. 2. Example of converting a simple continuous range query into encrypted reduced paths.

Fig. 3. Noncontinuous range query consists of two or more individual ranges and its corresponding reduced paths.

In this model, an encrypted query from the query user is for-
warded to IoT end devices via the fog node. The IoT end
devices, then, encrypt their responses and report them to the
fog node for aggregation. Finally, the fog node returns the
aggregated results to the query user.

IoT End Devices I = {I1, I2, . . . , IN}: A large population of
IoT end devices (I) of size N are spread across the end-device
layer and related to the specific IoT ecosystem. After collect-
ing the raw data wi from sensing component, each end-device
Ii can provide data processing functionality before delivering
the data to the fog node. More precisely, different process-
ing tasks, such as validating, converting, packaging, and even
encrypting will enable IoT end device Ii to successfully trans-
mit highly accurate sensitive data. For example, suppose a
sensed high-precision floating-point value wi = 0.195874 is to
be send. It can be modified into an arbitrary precision integer
by applying simple scaling, truncating, or rounding functions,

e.g., truncate(wi = 0.195874 ∗ 10000 = 1958.74) = 1958.
Values are then encrypted and sent to the fog node. For
simplicity but without losing generality, we assume that the
prepared data wi are converted into integer values and lie
within the range of [0, n − 1], where n is a power of two.
Note that we can easily extend the range so that the condition
n = 2h holds. Continuing with our example, we can initial-
ize n = 2048 = 211 to appropriately cover all possible return
values wi in the range 0 ≤ wi ≤ 2048.

B. Security Model

In our security model, all entities are assumed to be honest-
but-curious participants, i.e., they faithfully follow the query
processing protocols but might try and extract any additional
query information during the data preparation and throughout
the query processing steps. For example, the fog node may be
curious about each IoT device’s data wi and the user’s query

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:42:56 UTC from IEEE Xplore. Restrictions apply.

MAHDIKHANI et al.: USING REDUCED PATHS TO ACHIEVE EFFICIENT PRIVACY-PRESERVING RANGE QUERY IN FOG-BASED IoT 4765

range [L, U]; each IoT device may be curious about other IoT
devices’ data and the query range [L, U]; and the query user
may be curious about each IoT device data wi, other than
query response value Count(I′). We also assume there is no
collusion between any two entities in our model.

Note that an external adversary may launch active attacks
on data integrity and source authentication, but as this work
focuses on communication efficiency and privacy those attacks
are beyond the scope of this article and left for future work.

C. Design Goals

Given the above system and security models, our design
goals are to present a privacy-preserving and communication-
efficient range query scheme for fog-based IoT.

Proposed Scheme Should Be Privacy Preserving: Both the
lower and upper bound values in the query [L, U] should be
private, i.e., no one, except the user, can retrieve [L, U] to
trace the query user’s interests. In addition, the data collected
by IoT devices are also sensitive and should be private, i.e.,
those data must only be accessible by their owners. Neither
the fog node nor the query user is permitted to retrieve/recover
the plain value wi of each IoT device Ii.

Proposed Scheme Should Be Efficient: Energy consumption
is the critical bottleneck in IoT ecosystems and, at the same
time, reaching the above privacy goal will introduce addi-
tional communication overhead. Therefore, in the proposed
scheme, we aim to improve the communication efficiency by
significantly reducing the number of encrypted blocks and
achieving O(log2 n) communication efficiency, much better
than previously reported ones [16], [17].

III. PRELIMINARIES

In order to accomplish the above communication-efficient
privacy-preserving range query scheme in fog-based IoT, we
need to adopt homomorphic encryption techniques, which sup-
port both homomorphic addition and multiplication. Since
most of the existing homomorphic encryption schemes are
in the public-key settings and computationally inefficient, we
briefly revisit the SHE scheme [17] to leverage it as a funda-
mental building block for our privacy-preserving range query.
It should be noted that the SHE scheme differs from the
order revealing encryption (ORE) technique [21]–[23] that
enables searchable encryption instead of homomorphic aggre-
gation. We also review the XOR operation and introduce our
homomorphic XOR operator to check equality/inequality of
encrypted bit values as it is the core operation of our proposed
scheme.

A. Description of SHE Scheme

The SHE scheme, which is secure under the known-
plaintext attack, has three algorithms, namely, key generation,
encryption, and decryption [17], which is described as follows.

1) Key Generation: Given the security parameters
(k0, k1, k2) satisfying k1
 k2 < (k0/2), generate the
secret key SK = (p, q,L), where p and q are two large
prime numbers with |p| = |q| = k0 and L is a random
number with the bit length |L| = k2. Compute N = pq

and set the public parameter PP = (k0, k1, k2,N). At
the same time, set the message space M as {0, 1}k1 .

2) Encryption: A message m ∈M can be encrypted with
the secret key SK = (p, q,L) as

c = E(m) = (rL+ m)
(
1+ r′p

)
mod N (4)

where r ∈ {0, 1}k2 and r′ ∈ {0, 1}k0 are two random
numbers.

3) Decryption: A ciphertext c = E(m) can be decrypted
with the secret key SK = (p, q,L) as

D(c) : m = (c mod p) mod L. (5)

The correctness of the decryption is as follows:

D(c) = (c mod p) mod L
= ((

(rL+ m)(1+ r′p) mod N)
mod p

)
mod L

= (rL+ m) mod L (∵ 2k2 < k0)

= m (∵ k1
 k2).

Given the public parameter PP, SHE enjoys the following
homomorphic properties.

1) Homomorphic Addition-I: Given two ciphertexts c1 =
E(m1) = (r1L+m1)(1+r′1p) mod N and c2 = E(m2) =
(r2L + m2)(1 + r′2p) mod N , we have c1 + c2 →
E(m1+m2).

2) Homomorphic Multiplication-I: Given two ciphertexts
c1 and c2, we have c1 · c2 → E(m1 · m2).

3) Homomorphic Addition-II: Given a ciphertext c1 =
E(m1) = (r1L + m1)(1 + r′1p) mod N , and a plaintext
m2, we have c1 + m2 → E(m1 + m2).

4) Homomorphic Multiplication-II: Given a ciphertext c1
and a plaintext m2, we have c1 · m2 → E(m1 · m2).

Based on the above homomorphic properties of SHE, we
design our efficient privacy-preserving range query scheme in
the next section.

B. XOR Gate

One of the most useful digital logic gates to compare binary
values is the XOR gate (⊕), i.e., 0 ⊕ 0 = 0, 0 ⊕ 1 = 1,
1⊕0 = 1, and 1⊕1 = 0. In our proposed scheme, we need to
homomorphically compare pairs of encrypted zeros and ones.
Therefore, for the given SHE ciphertext values E(X) and E(Y),
the following homomorphic expression must be evaluated to
securely obtain E(X ⊕ Y):

E(X ⊕ Y) = E(X)+ E(Y)− 2E(X)E(Y). (6)

IV. OUR PROPOSED SCHEME

Our O(log2 n) communication-efficient privacy-preserving
range query scheme for fog-based IoT has roots in both novel
path reduction process and SHE homomorphic encryption. We
first describe our path reduction process, which is executed at
the query user side to generate the encrypted reduced paths
from a given range query [L, U] over the range [0, n − 1].
Then, we describe our privacy-preserving range query scheme
in detail: 1) initializing the SHE cryptosystem (key gener-
ation phase); 2) generating encrypted range query at user

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:42:56 UTC from IEEE Xplore. Restrictions apply.

4766 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 6, MARCH 15, 2021

side; 3) responding to the encrypted query at IoT device;
4) aggregating the encrypted responses in the fog node; and
5) decrypting the aggregated response to get the final result at
user side.

A. Range Queries as Reduced Paths

Our O(log2 n) communication-efficient algorithm formu-
lates the range query [L, U], where 0 ≤ L ≤ U ≤ n − 1
and n is a power of two, as a reduced path structure in which
the length of each entry lies between 1 and h = log2 n. This
process consists of the following steps.

1) Construct Perfect Binary Tree: Given a range query
[L, U] over [0, n − 1], the PBTree T is constructed in which
the leaf nodes are sequentially labeled from left to right with
numbers from zero to n−1. Moreover, the left edges of T are
labeled by zeros and the right edges by ones. For example,
Fig. 2 depicts the sample PBTree T for n = 16 and simple
continuous range [L, U] = [5, 12].

Notice that this scheme, unlike [16] and [17], supports
not only simple continuous range queries [L, U] but also
noncontinuous range queries that consist of two or more
nonadjacent range queries, i.e., [L, U] = ∪s

ι=1[Lι, Uι] =
[L1, U1] ∪ [L2, U2] ∪ · · · ∪ [Ls, Us]. For example, a noncon-
tinuous range query and its corresponding reduced paths are
depicted in Fig. 3.

Definition 1 (PBTree): A PBTree T with n leaf nodes has
n−1 remaining nonterminal nodes, including a root node and
n− 2 internal nodes. It can be declared as below in which all
nonterminal nodes have both left and right nonempty subtrees,
and all leaves have the same height h = log2 n, where n ≥ 2
is a power of two. In addition, edges leading to the left and
right subtrees are, respectively, labeled with zeros and ones

p u b l i c c l a s s PBTree {
Node r o o t ;
s t a t i c c l a s s Node {

i n t d a t a ;
Node l e f t , r i g h t ;
Node (i n t d a t a) {

t h i s . d a t a = d a t a ;
t h i s . l e f t = n u l l ;
t h i s . r i g h t = n u l l ;

}
}

2) Range Query Encoding: In this step, terminal node t
in range query [L, U] is encoded into a binary string s that
represents the path from the root to the terminal node t. To
this end, Algorithm 1 recursively traverses from root to all leaf
node t in [L, U] = ∪s

ι=1[Lι, Uι] and uses the visited array to
keep track of the discovered vertices. Therefore, at the end of
this traversal process, there exists the entry s ∈ S that indicates
the corresponding path from root to leaf nodes t in [L, U].
Moreover, the size of S is U − L + 1, i.e., |S| = U − L + 1.
Also, the length of each entry in S equals the height of PBT T ,
i.e., |s ∈ S| = log2 n = h. For example, in Fig. 2, the path from
the root to terminal node t = 11 ∈ [5, 12] can be expressed
as “r,l,r,r,” equivalent to s = “1011” by simply replacing
“r(right)”s with “1”s and “l(left)” with “0”. Also, note that
the length of each entry s ∈ S is |s| = h = log2 16 = 4.

3) Reducing Paths: To achieve O(log2 n) communication
efficiency, our path reduction algorithm combines the listed

Algorithm 1 Range Query to Traversal Path Strings
Input: PBTree T , [L, U] = ∪s

ι=1[Lι, Uι]; 0≤ L≤ U≤n− 1
Output: ArrayList S � Paths from root to leaf terminal nodes that belong to the

range query

1: PathToLeaf← Ø � ArrayList<Character> PathToLeaf

2: S← Ø � ArrayList<String> S

3: for each t ∈ [L, U] do
4: T.GETPATH(T.root, PathToLeaf, t,′ ′)
5: S.ADD(PathToLeaf)
6: PathToLeaf .CLEAR()
7: end for
8: return S
� RT=root, PTNode=PathToNode, DNode=DestinationNode, VEdge=VisitedEdge

9: procedure GETPATH(RT, PTNode, DNode, VEdge)
10: if RT = null then
11: return false
12: end if
13: PTNode .ADD(VEdge) � Accumulate the visited edges

14: if RT .data = DNode then
15: return true
16: end if
17: if GETPATH(RT .left, PTNode, DNode,′0′) ∨

GETPATH(RT .right, PTNode, DNode,′1′) then � 0 for

traversing left subtrees and 1 for right ones

18: return true
19: end if
20: PTNode .REMOVE

(
PTNode .SIZE()− 1

)

21: return false
22: end procedure

paths in S and forms the reduced paths R. Fig. 2 illus-
trates an example of our path reduction technique output and
Algorithm 2 describes in detail how to merge the distinct paths
to form R from S. In each iteration of the loop in our reduction
algorithm, two leaf nodes or sibling subtrees with correspond-
ing path strings P and P ′ are reduced if: 1) they are both of
the same length (�); 2) their prefix substrings of length �− 1
are equal; and 3) they differ only in their last entry. This pro-
cess continues until reaching the maximum possible pruning
and stops when there are no more adjacent path strings to be
reduced (P and P ′ are zero-based indices)

(|P| = ∣
∣P ′∣∣ = �

) ∧ (P[0..�−2] = P ′[0..�−2]

)

∧ (P[�−1] = P ′[�−1]

)
. (7)

For example, the path from root to two different leaf nodes
five (“0101”) and six (“0110”) are not reducible due to their
different prefix substrings of length � − 1 = 3. However, as
shown in the figure, the two subtree sibling nodes six (“0110”)
and seven (“0111”) are reducible and they will be merged into
single path string “011” as they follow our reduction rule.

4) Inverting Reduced Paths: Since the XOR operation will
eventually be applied to check whether an IoT device’s pre-
pared data are in the range query or not, the reduced paths R
are flipped to get the inverted paths V . As shown in Fig. 2,
inverted paths V are simply obtained by flipping zeros to ones
and ones to zeros in each string entry of R.

5) Encrypting Inverted Paths: Inverted paths V , in turn, are
encrypted to form the ciphertext query paths Q. To do so, we
simply encrypt zeros and ones by using the SHE scheme.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:42:56 UTC from IEEE Xplore. Restrictions apply.

MAHDIKHANI et al.: USING REDUCED PATHS TO ACHIEVE EFFICIENT PRIVACY-PRESERVING RANGE QUERY IN FOG-BASED IoT 4767

Algorithm 2 Reducing Paths
Input: ArrayList S, |s ∈ S| = h � Paths from root to leaf nodes

Output: ArrayList R, 1 ≤ |d ∈ R| ≤ h � Reduced paths

1: ArrayList RPath [2] � RPath [0] and RPath [1]

2: RPath [0]← S
3: Src← 0, Dst← 1 � Determine the source and destination RPath

4: flag← false � Terminate the loop execution

5: repeat
6: flag← false
7: for each di ∈ RPath [Src] do � 0 ≤ i < RPath [Src].SIZE()

8: if i < RPath [Src].SIZE()− 1 then
9: strRes←REDUCE

(
RPath [Src].GET(i), RPath [Src].GET(i+ 1)

)

10: if strRes = "" then
11: RPath [Dst].ADD

(
RPath [Src].GET(i)

)

12: else
13: RPath [Dst].ADD(strRes)

14: flag← true
15: i++
16: end if
17: else
18: RPath [Dst].ADD

(
RPath [Src].GET

(
RPath [Src].SIZE()− 1

))

19: end if
20: end for
21: if flag = true then � Plan for the next iteration

22: RPath [Src].CLEAR()
23: Src = (Src+1) mod 2
24: Dst = (Dst+1) mod 2
25: end if
26: until flag = true
27: R← RPath [Dst]
28: return R

29: procedure REDUCE(x, y)
30: �x ← x.LENGTH()
31: �y ← y.LENGTH()
32: if

(
(�x=�y)∧(x[0..�x−2]=y[0..�y−2])∧(x[�x−1] �=y[�y−1])

)
then

33: return x[0..�x−2]
34: end if
35: return ""
36: end procedure

6) Adding Dummy Paths: Let us consider what happens
when the query user examines the range query: [L, U] =
[0, (n/2) − 1] (namely, the entire left subtree). The reduced
path, in this case, is “0” and consequently the encrypted
inverted path contains just one entry, including one encrypted
value, i.e., “E(1).” However, transmitting it to the fog node
would lead to a high probability of inferring the query.
For instance, in our above example, by simply submitting
ciphertext “E(1),” the fog node can infer that the query user
has examined one of the following queries: the left subtree
([L, U] = [0, (n/2)−1]) or right subtree ([L, U] = [(n/2), n−
1]). To overcome this problem, dummy paths (shaded yellow
row in Fig. 2) are injected to prevent the curious fog node from
inferring or guessing the exact range query. They are appended
to encrypted query paths Q to output final encrypted query F.
The theoretical analysis on dummy paths’ length and guessing
probability is detailed later in Section V. Finally, an additional
encrypted column is added to each path entry to distinguish
the dummy paths from the real ones. E(1) will be assigned
to valid paths and E(0) to dummy paths. Therefore, since the

Fig. 4. Lower bound communication complexity (minimum reduced path
length) with q1 ad q2 that have, respectively, queried left and right subtrees.

Fig. 5. Upper bound communication complexity in [L, U] = [1, n− 2].

dummy paths are multiplied by E(0), they will be implicitly
discarded during the aggregation phase in the fog node.

B. Communication Complexity Analysis

The communication complexity of the proposed scheme is
influenced by the total number of encrypted zeros and ones that
are transmitted from the query user to the fog node and IoT
nodes. We now examine the minimum and maximum number
of encrypted blocks to obtain the lower and upper bounds of
the communication cost.

Lower Bound Analysis: Consider a user’s range query when
the query is covering exactly half of the whole domain (as
depicted in Fig. 4), namely, the left subtree of T ([L, U] =
[0, (n/2)− 1]) or the right one ([L, U] = [(n/2), n− 1]). The
length of the reduced path in both cases is one. Thus, the lower
bound is achieved and the communication complexity is O(1).

Upper Bound Analysis: The upper bound value can be
obtained by issuing the range query: [L, U] = [1, n − 2] (as
shown in Fig. 5), in which the maximum number of encrypted
blocks equals (h + 1)(h + 2), where h = log2 n. Hence, the
upper bound communication complexity is O(log2 n)

Upper Bound : h+ (h− 1)+ · · · + 2+ 2+ · · · + (h− 1)+ h

= 2(h+ (h− 1)+ (h− 2)+ · · · + 2)

= (h− 1)(h+ 2) ∈ O
(

log2 n
)
.

C. Description of Our Proposed Scheme

In this section, we give a detailed description of the steps
involved in our scheme.

1) Query User Key Generation: For simplicity, we consider
n = 2h to represent n as an h-bit binary value. Given the input
parameters k0, k1, and k2, the query user generates a secret key
SK = (p, q,L) and a public parameter PP = (k0, k1, k2,N)

for the SHE scheme. Then, the query user keeps the secret

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:42:56 UTC from IEEE Xplore. Restrictions apply.

4768 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 6, MARCH 15, 2021

key SK secretly and publishes the public parameter PP to the
fog node and all IoT devices. It should be noted that achiev-
ing O(log2 n) communication efficiency requires the following
further assumptions.

1) Message space depends on k1 and it should be set to at
least �log2 N�, where N is the number of IoT devices,
as it needs to cover the maximum value of the count
range query COUNT(I′) = |I′|, i.e., |I| = N.

2) To achieve the intended communication efficiency, the
SHE scheme should accept at least 2h homomorphic
multiplication (h multiplication during XOR operation,
h− 1 for multiplying the XORs’ outputs, and one multi-
plication by applying a filter to clear out dummy paths),
i.e., k0 should be set equal to 2(2h + 1)k2 in order to
successfully evaluate the 2h-depth multiplicative circuit.

2) Range Query Generation at Query User: The range
count query COUNT(I′) = |I′|, where I′ = {Ii|Ii ∈ I ∧
wi ∈ [L, U]}, allows the user to retrieve the number of IoT
devices Ii, whose data wi are in the range [L, U] where
0 ≤ L ≤ U ≤ n − 1. In order to fulfil the privacy-preserving
range query, the following steps should be taken by the query
user.

Step 1: Construct the PBTree T of height h = log2 n, with
n leaf nodes labeled, from left to right, with 0, 1, . . . , n − 1
and the left and right edges are labeled with zero and one,
respectively.

Step 2: Generate the path from the root to leaves whose
corresponding labels are in the range query, i.e., t ∈ [L, U].

Step 3: Combine the path strings to obtain the reduced paths
R. The length of each entry in R is between one and h, i.e.,
∀ d ∈ R, 1 ≤ |d| ≤ h.

Step 4: Invert each reduced path string by replacing zeros
by ones and vice versa.

Step 5: Encrypt zeros and ones (separately) in each inverted
path string by using SHE.

Step 6: Append dummy encrypted paths (encrypted zeros
and ones) to prevent the fog node from inferring the actual
query, more likely when it is a special-case query.

Step 7: Add the encrypted filter as a new column to wipe
out the dummy paths (additional column in the final encrypted
query in Fig. 2). More specifically, E(1)s are assigned to
real reduced paths, whereas E(0)s are assigned to dummy
paths, i.e., E(0)s behave as a filter to eliminate the dummy
paths during the homomorphic aggregation. After that, the
encrypted range query F will be sent to all IoT devices via
the fog node. To be precise, the encrypted range query F
includes the real paths, dummy paths, and the filtering col-
umn, together with an additional pair of encrypted zero and
one, i.e., (E(0), E(1)). Note that each IoT device Ii can formu-
late its encrypted response without knowing the secret key SK
during the response generation phase based on the additional
pair of (E(0), E(1)).

3) Query Response at IoT Devices: Upon receiving the
range query F, including real and additional dummy path
strings, each IoT device Ii ∈ I needs to generate the encrypted
response as follows. Since SHE is a symmetric encryption
scheme, and no one other than the query user knows the secret
key SK, each IoT device Ii cannot directly encrypt its data

wi. Therefore, instead of encrypting wi, each IoT device can
form the encrypted equivalent data E(wi) by combining E(1)’s
and E(0)’s from the additional pair (E(0), E(1)) in the range
query F.

Step 1: Ii converts the sensed and prepared data wi into
binary form, where 0 ≤ wi ≤ n−1. This is similar to traversing
the PBTree with n leaves, from root to leaf node whose label
is wi. For example, as it is shown in Fig. 6, the path strings
from root to leaves for two different sensed data 3 and 9 are
“0011” and “1001,” respectively.

Step 2: Ii generates the corresponding encrypted value
for the binary representation of path string. Ii can gen-
erate the encrypted equivalent value for each sensed
data wi by combining E(1)’s and E(0)’s. For example,
the encrypted equivalent value of “0011” and “1001”
is E(0011) = (E(0), E(0), E(1), E(1)) and E(1001) =
(E(1), E(0), E(0), E(1)).

Step 3: Ii performs the homomorphic XOR operations over
all entries in the encrypted query F and previously computed
E(wi) as listed in the large rectangles in Fig. 6.

Step 4: The output of the XORs are homomorphically mul-
tiplied to get the encrypted partial results. Then, these are
multiplied by encrypted values in the supplementary filter
column of F to clear out the dummy path strings from the
response. For example, in the case of wi = 3, our carefully
devised filter column has nullified the effect of possible E(1)s
from the response by setting the filter column to E(0) for
dummy path entries (yellow shaded rectangle while calculating
the response for wi = 3).

Step 5: The output of the previous step, in small rectangles,
will homomorphically be added to each other to get the final
encrypted response Res[Ii]

Res[Ii] =
∑

∀f∈Freal

E(1)
(∏

f ⊕ wi

)

+
∑

∀f∈Fdummy

E(0)
(∏

f ⊕ wi

)
.

Step 6: Finally, to protect Res[Ii] from the semihonest
fog node, the IoT device Ii should self-blind the encrypted
response Res[Ii] by converting it into another valid ciphertext
as follows:

Res[Ii] = Res[Ii]+ (E(0)× r)

where r ∈M. This will prevent the fog node from generating
different combinations of E(0) and E(1) of IoT device Ii to
guess the corresponding sensed data wi. Eventually, Ii can send
back the self-blinded ciphertext result Res[Ii] to the fog node.

4) Response Aggregation at Fog Node: After receiving all
response values Res[Ii] from IoT devices, the fog node aggre-
gates the encrypted responses to generate the final encrypted
result Count and forward it back to the user

Count =
∑

Ii∈I

Res[Ii].

5) Response Recovery at Query User: Upon receiving the
encrypted query result Count, the query user uses secret key

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:42:56 UTC from IEEE Xplore. Restrictions apply.

MAHDIKHANI et al.: USING REDUCED PATHS TO ACHIEVE EFFICIENT PRIVACY-PRESERVING RANGE QUERY IN FOG-BASED IoT 4769

Fig. 6. IoT device Ii’s response for two different sensed data wi = 3 and 9, where 3 /∈ [5, 12] and 9 ∈ [5, 12].

SK to recover the range query response as

Count
D()−−→ Count

(
I′
) = ∣∣I′

∣∣ =
∑

Ii∈I

Res[Ii].

The correctness of the result is verified as follows:

Count =
∑

Ii∈I

Res[Ii] =
∑

Ii∈I′
E(1)+

∑

Ii /∈I′
E(0) = E

(∣∣I′
∣∣).

V. SECURITY ANALYSIS

In this section, we analyze the security of our proposed
scheme. We start with preserving the privacy of range query
[L, U] and then continue with protecting the privacy of
subset I′.

Query Range [L, U] Is Privacy Preserving in Our Proposed
Scheme: As discussed in Section IV-A, in order to achieve
communication efficiency, the query range [L, U] (0 ≤ L ≤
U ≤ n − 1) is turned into encrypted reduced paths F with
minimum 2 and maximum (log n − 1)(log n + 2) encrypted
blocks. Each encrypted entry in F has been encrypted by
SHE, which has been proved to be secure under the known-
plaintext attack [17]. SHE’s security is based on the large
integer factorization problem (LIFP). Therefore, by properly
setting the parameters, SHE is secure while LIFP is hard which
means SHE guarantees that without knowing the secret key
SK = (p, q,L), the adversary has no idea of the entries inside
F. Since both the fog device and IoT devices cannot access
the secret key SK, they have no idea of the encrypted reduced
path strings inside F, i.e., they cannot distinguish whether a

ciphertext in F is encrypted from zero or one. Precisely, with-
out plaintext information about entries in F, the fog node and
IoT devices have no idea of the query range [L, U] or even
part of it.

Moreover, in the case of executing range queries with spe-
cial values, e.g., [L, U] = [0, n− 1], as F has just two single
encrypted entries, i.e., E(0) and E(1), there is a possibility of
inferring the range query. Hence, to prevent the fog node and
IoT devices from guessing the range query, dummy paths are
appended to the real entries in F as well as additional filter col-
umn to distinguish the real entries from dummy ones. Adding
dummy path(s) provides an effective approach to reducing the
probability of guessing the encrypted queries, especially when
the query path length is short. For example, in Fig. 7, the
length of the ciphertext query path (Q) is L = 2. That would
mean that the curious entity can guess the original query by
selecting one of the four possible cases. i.e., “00,” “01,” “10,”
or “11”. Extending to the more general form, consider the
original range query with one entry of length L. In this case,
without injecting dummy path(s) there are 2L different pos-
sible queries. Therefore, a curious entity can correctly guess
the exact range query with probability (1/2L). Injecting one
dummy path instance of length L′ limits the probability of
a correct guess by the adversary in two ways. First, since a
dummy path instance of length L′ is injected, it generates 2L

′

additional cases. Second, for the adversary, both a dummy
path instance and a real range query path are indistinguish-
able; therefore, the adversary needs to search the whole string
path of length L + L′ with 2L+L′ new cases. Consequently,

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:42:56 UTC from IEEE Xplore. Restrictions apply.

4770 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 6, MARCH 15, 2021

Fig. 7. Adding dummy path instance of length L′ = 4 to original range query of length L = 2 to bind the probability (ε) of correctly guessing the user’s
range query; ε = [1/(2L + 2L

′ + 2L+L′)].

a curious entity needs to guess the exact query from either
dummy path instances (2L

′
), real range query paths (2L),

or both (2L+L′). This mean that the probability of guess-
ing the user’s real range query will be bounded from (1/2L)

to [1/(2L + 2L
′ + 2L+L′)]. Besides, to interdict the curious

entity from successfully guessing the real range query and
to bind the probability less than or equal to ε, we need to
set L′ ≥ �log2 [((1/ε)− 2L)/(1+ 2L)]�, which is given as
follows:

1

2L + 2L′ + 2L+L′
≤ ε⇒ 2L + 2L

′ + 2L+L′ ≥ 1

ε

⇒ 2L
′(

1+ 2L
)
≥ 1

ε
− 2L ⇒ L′

≥
⌈

log2

1
ε
− 2L

1+ 2L
.

⌉

.

For example, consider an original range query with an
entry of length L = 2 in Fig. 7. In order to bind the
probability of correctly guessing the range query from ε =
(1/2L) = (1/4) to ε = (1/50), we need to add dummy
path(s) of length L′ ≥ �log2 [((1/ε)− 2L)/(1+ 2L)]� =
�log2 [(50− 22)/(1+ 22)]� = 4. Note that the dummy paths
of length L′ > h, where h = log2 n, need to be broken down
into separate dummy path instances of maximum length h for
each instance.

Subset I′ Is Also Privacy Preserving in the Proposed
Scheme: The subset I′ denotes a set of IoT devices whose data
are within the query range [L, U], i.e., I′ = {Ii|Ii ∈ I ∧ wi ∈
[L, U]}. As described in the security model, I′ should be kept
secret from the query user, fog device, and each IoT device.

First, when the fog node’s encrypted aggregated query
response is received by the query user, he/she will decrypt
using the secret key SK to obtain the final result. This means
that the query user only knows the number of IoT devices
whose data are within the requested query range [L, U], but
has no idea which specific IoT device has a data within the

query range. Thus, the subset I′ can be kept secret from the
query user.

Second, on one hand, the fog node receives the encrypted
query F from the query user and forward it to the IoT devices;
on the other hand, the IoT devices’ encrypted responses, i.e.,
Res(Ii)s, will be aggregated at the fog node and the final cipher-
text response

∑
Ii∈I Res[Ii] is forwarded back to the query user.

Since the query range [L, U] is transformed into encrypted
query F by applying SHE, the security of SHE guarantees that
the fog node has no idea on the plaintext of the query range.
Then, the fog node has no way to determine the subset I′ by
observing encrypted path strings F. At the same time, each
encrypted response Res(Ii) is self-blinded with random fac-
tor (E(0)× r) to make the brute-force attack impossible. This
would mean that if there is no self-blind factor (E(0) × r),
it would be possible for the fog node to identify the spe-
cific IoT device’s response, i.e., it can iterate over all possible
prepared values wi (0 ≤ wi ≤ n − 1) and compute the cor-
responding response for each entry in F to check whether

Res(Ii)
?=∑

∀f∈Freal E(1)(
∏

f ⊕ wi) +∑
∀f∈Fdummy E(0)(

∏
f ⊕

wi). Although this attack requires a lot of computations, it is
feasible, especially when n is small value. Luckily, protecting
Res[Ii] with (E(0)×r) will make it impossible for the fog node
to launch a brute force attack on an individual IoT device’s
response. Therefore, it is impossible for the fog node to obtain
the information about the subset I′ and the subset I′ is kept
secret from the fog node.

Third, for each IoT device Ii, if it attempts to obtain the
information about I′, it needs to determine whether itself is in
I′ or not and whether other IoT devices are in I′ or not. As
discussed before, Ii uses its prepared data wi to compute the
encrypted Res[Ii], but has no idea on Res[Ii] is E(0) or E(1).
In other words, Ii does not know whether wi is in the query
range [L, U] and Ii is in I′. Besides, since Ii cannot access
the plaintext data prepared by the other IoT devices and the
plaintext of query range, it has no idea whether the other IoT

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:42:56 UTC from IEEE Xplore. Restrictions apply.

MAHDIKHANI et al.: USING REDUCED PATHS TO ACHIEVE EFFICIENT PRIVACY-PRESERVING RANGE QUERY IN FOG-BASED IoT 4771

TABLE II
PARAMETER SETTINGS

(a) (b)

Fig. 8. Communication overhead comparisons (linear scale) between the proposed scheme and Lu’s scheme with respect to n. (a) Requests from user to fog
node. (b) Responses from fog node to user.

devices are in I′ or not. Thus, the subset I′ is kept secret from
other IoT devices.

VI. PERFORMANCE EVALUATION

In this section, we give the result of an experimental assess-
ment to analyze the effectiveness of the proposed scheme with
respect to the computational costs and communication over-
heads. The detailed results confirm the practical performance
of the scheme. Each step of the privacy-preserving range
query in this scheme is compared with the corresponding steps
in both previously proposed schemes, i.e., Lu’s scheme [16]
and the STSM scheme [17]. Lu’s privacy-preserving range
query, with O(

√
n) communication overhead, takes advantage

of
√

n × √n matrix decomposition technique and is per-
formed based on the BGN homomorphic cryptosystem [24].
The STSM scheme has a O(log3 n) communication cost as
it benefits from SHE as well as an encoding method to con-
vert a given range query into log n + 1 semitriangular sparse
matrices. The platform used to compare the schemes was
an Intel Core i5-2400 CPU @ 3.10 GHz, with 8 GB main
memory running Linux (Ubuntu 16.04). The detailed parame-
ter settings for both schemes and all experiments are listed in
Table II.

A. Communication Overhead

For the communication overhead analysis, we report the
required overhead in both directions between the user and the
fog node, i.e., the volume of encrypted data that is uploaded
from the query user to the fog node and the single ciphertext
response length from the fog node to the query user. First,
Fig. 8(a) compares the communication overhead of transfer-
ring an encrypted query from the query user to the fog node,
with n varying from 210 to 230. It is clear that the overhead of
the Lu’s scheme grows tremendously as n increases. This is
mainly caused by the simultaneous increase in the number of
encrypted elements. Our proposed scheme is also more effi-
cient than the STSM scheme. Our O(log2 n) communication
pattern will make more efficient use of bandwidth as com-
pared to Lu’s scheme and the STSM scheme with O(

√
n) and

O(log3 n), respectively. For instance, in case of n = 230, the
communication cost in our proposed scheme is less than one
MB comparing to almost 40.6 and 5.5 MB in Lu’s scheme
and the STSM scheme, respectively. Therefore, the communi-
cation cost from the query user to the fog node in our proposed
scheme is remarkably low.

Second, Fig. 8(b) depicts the encrypted response length
from a fog node to the query user. All these three schemes are
efficient and with responses being less than one KB. However,

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:42:56 UTC from IEEE Xplore. Restrictions apply.

4772 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 6, MARCH 15, 2021

(a) (b)

(d) (e)

(c)

Fig. 9. Computational cost comparison between our scheme and Lu’s scheme for n varying from 210 to 230. (a) Number of encryptions in the decomposition
phase. (b) Query generation at the user side. (c) Query response at the IoT device. (d) Response aggregation at the fog node. (e) Response recovery at the
user side.

unlike the STSM scheme and our proposed scheme, Lu’s
scheme is irrelevant to n. This is due to the different val-
ues for k0 that should be set to 2(2h + 1)k2 and 2(h + 1)k2
in our proposed scheme and the STSM scheme to support
2h and h-depth homomorphic multiplications, respectively. In
Lu’s scheme, it is based on the BGN, ciphertext length is con-
stant and depends on the security parameter κ . For example,
in the case of κ = 512, the BGN ciphertext size is 4κ = 256 B
or 0.25 KB.

B. Computational Cost

As well, in all three schemes, the computational costs are
influenced by the number of encrypted elements that are
generated by the query user during the range query encod-
ing phase. Fig. 9(a) compares the number of encrypted in
all three schemes. The computational costs of Lu’s scheme
and the STSM scheme increase rapidly with n. The differ-
ence is rooted in the decomposition method. Lu’s scheme
and the STSM scheme use O(

√
n) and O(log3 n) decompo-

sition approaches, respectively, whereas ours take advantage
of a faster and more efficient decomposition technique with
O(log2 n) communication efficiency.

Note: Execution times for Lu’s scheme are very high com-
pared with both the STSM scheme and our proposed scheme
(almost 1 ms in three out of the four subfigures). We have,
therefore, used a logarithmic scale to make interpretation
easier.

Fig. 9(b) shows the consuming time for query generation
by the user. From the figure, we see that the computational

cost of Lu’s scheme dramatically grows with n while the
STSM and our proposed schemes have a significantly lower
growth rate. We also observe that our scheme has a better
execution time than the STSM scheme. The reason behind
this is that the schemes are producing a different number
of encrypted elements as discussed before. Therefore, our
proposed scheme achieves better results than the others in
terms of query generation time.

Fig. 9(c) illustrates the response time for and IoT device.
Although the IoT device response time in Lu’s scheme is unaf-
fected by problem size, it is still considerably higher than the
other two. Additionally, we observe that our proposed scheme
requires more computational time than the STSM scheme, as
the IoT device’s response generation needs more computation,
i.e., a combination of XOR operations as well as more homo-
morphic additions and multiplications than the STSM scheme.
However, the response time in both schemes is much less than
1 s. Putting these two results together, our proposed scheme’s
query generation time is 16 times faster than that of the STSM
scheme, though the response time for each IoT device in our
scheme is slightly longer than that of the STSM scheme. As
a result, the overall execution time in our proposed scheme is
better than the STSM scheme.

Fig. 9(d) depicts the response aggregation time at the fog
node. It is mainly dependent on the number of IoT devices,
i.e., N. Therefore, as it is seen from the figure, the aggregation
time in all three schemes is independent of the problem size,
i.e., n, even if there is a slight increase in both our proposed
and the STSM schemes, varying with n. This is because of the

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:42:56 UTC from IEEE Xplore. Restrictions apply.

MAHDIKHANI et al.: USING REDUCED PATHS TO ACHIEVE EFFICIENT PRIVACY-PRESERVING RANGE QUERY IN FOG-BASED IoT 4773

gradually increasing ciphertext sizes with respect to problem
size. In Lu’s scheme, the ciphertext length depends only on
the security parameter κ and is consequently independent of n.
Moreover, the aggregation times in both our proposal and the
STSM scheme are almost the same as both schemes employ
the SHE cryptosystem.

Finally, Fig. 9(e) presents the response recovery time that
measures how much time the user spends decrypting the
ciphertext upon receiving the encrypted response from the fog
node. Obviously, they are still efficient and independent of
problem size n. However, decryption in both the proposed and
the STSM schemes (with a time less than one millisecond even
for n = 230) is faster than Lu’s scheme. The reason behind
this is that the latter performs in the BGN scheme and over
GT as well as requiring relatively smaller message space than
� = 1000 to operate more effectively. Message decryption
in the BGN scheme involves solving the discrete logarithm
using Pollard’s lambda method, i.e., the BGN scheme is time
consuming and less practical for larger message spaces.

It should also be noted that in addition to improving
significant portions of the query processing systems, our
proposed scheme has addressed two limitations of the other
two schemes, namely: 1) ours does not require the lower and
upper bound values be a power of two whereas the STSM
scheme does and 2) ours support noncontinuous range queries
while theirs do not.

VII. RELATED WORK

In this section, we will take a brief look at some previously
reported studies in privacy-preserving schemes for fog-based
IoT applications. Most recently, Mahdikhani et al. [17] have
devised the SHE scheme along with decomposition technique
to transform the range queries into semitriangular sparse matri-
ces to achieve O(log3 n) communication efficiency. Although
the STSM scheme has acceptable communication and com-
putation efficiency, it only accepts continuous range queries
in the form of [L = 2a, U = 2a′], i.e., the lower and upper
bound values should be chosen as a power of two. Prior to this
study, a privacy-preserving range query in fog-based IoT was
studied in [16], which is another related study to our proposed
scheme. The scheme proposed in [16] is built upon the BGN
homomorphic encryption together with a range query expres-
sion, decomposition, and composition technique, which can
achieve O(

√
n) communication efficiency. It is less efficient

than the STSM scheme, but it accepts any continuous form
of range queries. In addition, because the scheme is based on
the BGN scheme with time-consuming bilinear pairing oper-
ations in public-key settings, the computational cost is large.
Aiming at improving the communication efficiency as well as
resolving the deficiencies in the queries’ form, our proposed
scheme comes with a novel range query encoding technique
to achieve O(log2 n) communication efficiency and overcome
the weakness of the query format.

When the privacy-preserving range query on the number
of IoT devices whose data xi is within the range [L,U] is
considered as a special privacy-preserving data aggregation
scheme in fog-based IoT, there are other studies close to

our proposed scheme. Lu et al. [13] addressed heteroge-
neous data aggregation in real IoT applications by proposing
a lightweight privacy-preserving data aggregation (LDPA) for
a fog-enabled setting. The proposed LPDA is characterized
by applying Paillier cryptosystem, the Chinese Remainder
Theorem, and one-way hash chain function to aggregate
hybrid IoT devices’ data and to early filter the injected false
data at the network edge. Huang et al. [25] studied the
fog-assisted selective aggregation operation. Specifically, they
constructed a new threat model to formalize the noncollu-
sive and collusive attacks of compromised fog nodes. Their
proposed privacy preserving and reliable selective multisource
aggregation scheme is comprised of the BCP cryptosystem,
randomized message-lock encryption, homomorphic proxy-
authenticators, and multidimensional aggregation and can well
tackle the data privacy and reliability challenges. Recently,
Mahdikhani et al. [26] presented a privacy-preserving sub-
set aggregation scheme in fog-enhanced IoT scenarios, which
enables a query user to gain the sum of the prepared data
from a subset of IoT devices. To identify the subset, the inner
product similarity of the normalized vectors in the query user
side and each IoT device is securely computed. Only when
the inner product is greater than the user’s specified threshold,
an IoT device’s data will be privately aggregated to form the
final response.

VIII. CONCLUSION

In this article, we have proposed a novel privacy-preserving
range query encoding technique based on SHE homomor-
phic encryption [17] and reduced paths concept to privately
and efficiently execute range queries with O(log2 n) com-
munication efficiency. Compared with previously discussed
studies [16], [17], our proposed scheme can also support non-
continuous range queries for any given value of L and U. Also,
extensive experimental results demonstrate that our proposed
scheme shows significant improvements in both communi-
cation overhead and computational cost. Consequently, our
proposed scheme is more efficient privacy-preserving range
query in fog-based IoT environments. In the future, we plan to
expand this study by launching a more complex configuration
in the system model.

REFERENCES

[1] Q. Kong, R. Lu, M. Ma, and H. Bao, “A privacy-preserving and verifi-
able querying scheme in vehicular fog data dissemination,” IEEE Trans.
Veh. Technol., vol. 68, no. 2, pp. 1877–1887, Oct. 2018.

[2] Q. Kong, R. Lu, M. Ma, and H. Bao, “A privacy-preserving sensory data
sharing scheme in Internet of Vehicles,” Future Gener. Comput. Syst.,
vol. 92, pp. 644–655, Mar. 2019.

[3] M. Li, L. Zhu, Z. Zhang, X. Du, and M. Guizani, “PROS: A privacy-
preserving route-sharing service via vehicular fog computing,” IEEE
Access, vol. 6, pp. 66188–66197, 2018.

[4] Y.-D. Chen, M. Z. Azhari, and J.-S. Leu, “Design and implementation
of a power consumption management system for smart home over fog-
cloud computing,” in Proc. IEEE 3rd Int. Conf. Intell. Green Build.
Smart Grid (IGBSG), 2018, pp. 1–5.

[5] X. Li, R. Lu, X. Liang, X. Shen, J. Chen, and X. Lin, “Smart community:
An Internet of Things application,” IEEE Commun. Mag., vol. 49, no. 11,
pp. 68–75, Nov. 2011.

[6] Y. Yang, X. Luo, X. Chu, and M.-T. Zhou, “Fog-enabled smart home
and user behavior recognition,” in Fog-Enabled Intelligent IoT Systems.
Cham, Switzerland: Springer, 2020, pp. 185–210.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:42:56 UTC from IEEE Xplore. Restrictions apply.

4774 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 6, MARCH 15, 2021

[7] H. Bao and R. Lu, “A new differentially private data aggregation with
fault tolerance for smart grid communications,” IEEE Internet Things
J., vol. 2, no. 3, pp. 248–258, Sep. 2015.

[8] H. Bao and L. Chen, “A lightweight privacy-preserving scheme with
data integrity for smart grid communications,” Concurrency Comput.
Pract. Exp., vol. 28, no. 4, pp. 1094–1110, 2016.

[9] H. Bao and R. Lu, “A lightweight data aggregation scheme achieving
privacy preservation and data integrity with differential privacy and fault
tolerance,” Peer-to-Peer Netw. Appl., vol. 10, no. 1, pp. 106–121, 2017.

[10] N. Saxena, B. J. Choi, and R. Lu, “Authentication and authorization
scheme for various user roles and devices in smart grid,” IEEE Trans.
Inf. Forensics Security, vol. 11, no. 5, pp. 907–921, Feb. 2016.

[11] M. A. Salahuddin, A. Al-Fuqaha, M. Guizani, K. Shuaib, and F. Sallabi,
“Softwarization of Internet of Things infrastructure for secure and smart
healthcare,” 2018. [Online]. Available: arXiv:1805.11011.

[12] M. Yang, T. Zhu, B. Liu, Y. Xiang, and W. Zhou, “Machine learning
differential privacy with multifunctional aggregation in a fog computing
architecture,” IEEE Access, vol. 6, pp. 17119–17129, 2018.

[13] R. Lu, K. Heung, A. H. Lashkari, and A. A. Ghorbani, “A lightweight
privacy-preserving data aggregation scheme for fog computing-enhanced
IoT,” IEEE Access, vol. 5, pp. 3302–3312, 2017.

[14] H. Bao, R. Lu, B. Li, and R. Deng, “BLITHE: Behavior rule-based
insider threat detection for smart grid,” IEEE Internet Things J., vol. 3,
no. 2, pp. 190–205, Jul. 2015.

[15] M. A. Ferrag, A. Derhab, L. Maglaras, M. Mukherjee, and H. Janicke,
“Privacy-preserving schemes for fog-based IoT applications: Threat
models, solutions, and challenges,” in Proc. IEEE Int. Conf. Smart
Commun. Netw. Technol. (SaCoNeT), 2018, pp. 37–42.

[16] R. Lu, “A new communication-efficient privacy-preserving range query
scheme in fog-enhanced IoT,” IEEE Internet Things J., vol. 6, no. 2,
pp. 2497–2505, Feb. 2020.

[17] H. Mahdikhani, R. Lu, Y. Zheng, J. Shao, and A. Ghorbani, “Achieving
O(log3 n) communication-efficient privacy-preserving range query in
fog-based IoT,” IEEE Internet Things J., vol. 7, no. 6, pp. 5220–5232,
Jun. 2020.

[18] K. Renuka, S. N. Das, and K. H. Reddy, “An efficient context manage-
ment approach for IoT,” IUP J. Inf. Technol., vol. 14, no. 2, pp. 24–35,
2018.

[19] H. Liang, J. Wu, Z. Liu, and J. Li, “Shape-unconstrained privacy-
preserving range query for fog computing supported vehicular networks
using image,” in Proc. IEEE/CIC Int. Conf. Commun. China (ICCC),
2019, pp. 683–688.

[20] M. Li, L. Zhu, and X. Lin, “Efficient and privacy-preserving carpool-
ing using blockchain-assisted vehicular fog computing,” IEEE Internet
Things J., vol. 6, no. 3, pp. 4573–4584, Aug. 2018.

[21] K. Lewi and D. J. Wu, “Order-revealing encryption: New constructions,
applications, and lower bounds,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Security, 2016, pp. 1167–1178.

[22] X. Yuan, X. Wang, C. Wang, B. Li, and X. Jia, “Enabling encrypted rich
queries in distributed key-value stores,” IEEE Trans. Parallel Distrib.
Syst., vol. 30, no. 6, pp. 1283–1297, Jun. 2018.

[23] Q. Wang et al., “Searchable encryption over feature-rich data,” IEEE
Trans. Depend. Secure Comput., vol. 15, no. 3, pp. 496–510, Jun. 2018.

[24] D. Boneh, E. Goh, and K. Nissim, “Evaluating 2-DNF formulas
on ciphertexts,” in Proc. TCC, Cambridge, MA, USA, Feb. 2005,
pp. 325–341.

[25] C. Huang, D. Liu, J. Ni, R. Lu, and X. Shen, “Reliable and privacy-
preserving selective data aggregation for fog-based IoT,” in Proc. IEEE
Int. Conf. Commun. (ICC), 2018, pp. 1–6.

[26] H. Mahdikhani, S. Mahdavifar, R. Lu, H. Zhu, and A. A. Ghorbani,
“Achieving privacy-preserving subset aggregation in fog-enhanced IoT,”
IEEE Access, vol. 7, pp. 184438–184447, 2019.

Hassan Mahdikhani (Graduate Student Member,
IEEE) received the B.Eng. degree in computer
engineering-software from Kharazmi University,
Tehran, Iran, in 2001, and the M.Eng. degree in
computer engineering-software from Iran University
of Science and Technology, Tehran, in 2006. He is
currently pursuing the Ph.D. degree in computer sci-
ence with the University of New Brunswick (UNB),
Fredericton, NB, Canada.

He is a Cybersecurity Researcher with the
Canadian Institute for Cybersecurity, UNB. His

research interests include cloud computing security, secure and privacy-
preserving computation offloading, and applied cryptography.

Rongxing Lu (Senior Member, IEEE) received the
Ph.D. degree from the Department of Electrical
and Computer Engineering, University of Waterloo,
Waterloo, ON, Canada, in 2012.

He is an Associate Professor with the Faculty of
Computer Science, University of New Brunswick
(UNB), Fredericton, NB, Canada.

Dr. Lu was awarded the most prestigious
“Governor General’s Gold Medal,” from the
Department of Electrical and Computer Engineering,
University of Waterloo in 2012 and won the eighth

IEEE Communications Society Asia Pacific Outstanding Young Researcher
Award in 2013. He is the Winner of Excellence in Teaching Award, FCS,
UNB from 2016 to 2017. He currently serves as the Vice-Chair (Conferences)
of IEEE ComSoc CIS-TC. He is currently a Senior Member of IEEE
Communications Society.

Jun Shao received the Ph.D. degree from the
Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai, China, in
2008.

He was a Postdoctoral Fellow with the School of
Information Sciences and Technology, Pennsylvania
State University, State College, PA, USA, from 2008
to 2010. He is currently a Professor with the School
of Computer Science and Information Engineering,
Zhejiang Gongshang University, Hangzhou, China.
His current research interests include network secu-

rity and applied cryptography.

Ali A. Ghorbani (Senior Member, IEEE) received
the M.Sc. degree in computer science from George
Washington University, Washington, DC, USA, in
1979, and the Ph.D. degree in computer science from
the University of New Brunswick, Fredericton, NB,
Canada, in 1995.

He has held a variety of positions in academic
for the past 37 years is currently a Professor
of Computer Science with the Tier 1 Canadian
Institute for Cybersecurity, the Director of the
Canadian Institute for Cybersecurity, University of

New Brunswick, which he established in 2016, and an IBM Canada Faculty
Fellow, where he is also the Founding Director of the Laboratory for
Intelligence and Adaptive Systems Research. He is a co-inventor on three
awarded patents in the area of Network Security and Web Intelligence and
has published over 270 peer-reviewed articles during his career. His current
research focus is cybersecurity, webintelligence, and critical infrastructure pro-
tection.

Prof. Ghorbani served as the Co-Editor-In-Chief of Computational
Intelligence: An International Journal from 2007 to 2017. He is the Co-
Founder of the Privacy, Security, Trust Network in Canada and its interna-
tional annual conference. He has supervised over 180 research associates,
postdoctoral fellows, graduate and undergraduate students during his career.

Authorized licensed use limited to: University of New Brunswick. Downloaded on May 21,2021 at 17:42:56 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

